
High-level design for user and component interfaces

Gregor v. Bochmann*

School of Information Technology and Engineering, University of Ottawa, 800 King Edward Ave, Room 5082, P.O. Box 450,

Stn A, Ottawa, Ont., Canada K1N 6N5

Received 21 June 2004; accepted 9 July 2004

Available online 7 October 2004

Abstract

Component-based software architecture is very important for current software engineering practice because (a) it is the basis for re-use of

software at the component level, and (b) in distributed systems, the physical distribution of an application over separate computers represents

a decomposition of the application. Typical e-commerce applications consist of various components sometimes belonging to different

organizations, and presenting different user interfaces to various categories of users. We review in this paper the current trend in standards for

inter-component communication in distributed systems, including various forms of remote procedure calls (RPC) and message passing, and

paradigms for describing and implementing user interfaces in the Web environment. We discuss whether the user interface can also be

described, at an abstract level, by RPC primitives. In the second part of the paper, we discuss the importance of indicating which party is

responsible for making certain decisions for selecting control flow alternatives and certain parameter values. This leads to some guidelines

for describing system behavior scenarios at the requirements level. We also discuss how this approach can be integrated with screen-oriented

behavior definitions.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Component-based development; Screen-oriented interface; Requirements modeling
1. Introduction

Complex computer systems are usually built as a

composition of several components. There are two main

reason for decomposing a system into components: (a) the

whole system may be easier to understand if it is described

as a composition of several components where each of these

components has a comparably simple structure and

behavior; and (b) the system may be implemented as a

distributed system, that is, different parts of the system run

on different computers which communicate with one

another through a telecommunications network. The

geographical distribution of different system functions is

often dictated by the requirements. Furthermore, during the

design phase, a system is often decomposed into a large

number of separate components, and the allocation of these

components to computers located at different geographical

locations may be one of the subsequent design decisions.
0950-7051/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.knosys.2004.07.005

* Tel.: C1 613 562 5800x6205; fax: C1 613 562 5664.

E-mail address: bochmann@site.uottawa.ca.
It is clear that the different system components must

communicate with one another in order to provide a system

that satisfies the user requirements. In order to define the

behavior of each component independently of the other

components, one has to establish well-defined interfaces for

communication. The primitives used for this communi-

cation should be implementable locally within the same

computer as well as over distance using networking

protocols. There are two basic communication primitives

that can be used here: asynchronous message passing and

(synchronous) remote procedure call (RPC).

In the first part of this paper, we give a review of the

major technologies proposed for the realization of RPC

communication within distributed systems, such as

CORBA, Java RMI and SOAP. While they have essentially

the same control structure, namely a procedure call, they

employ different encoding schemes for transmitting the

input and result parameters of the procedure calls. We also

discuss related directory structures for finding service

objects in distributed systems, and available software

development tools and infrastructures. We note that
Knowledge-Based Systems 17 (2004) 303–310
www.elsevier.com/locate/knosys

http://www.elsevier.com/locate/knosys


G.v. Bochmann / Knowledge-Based Systems 17 (2004) 303–310304
asynchronous message passing may be considered a

simplified version of RPC were the caller does not wait

for the return of the procedure call.

Then we discuss whether the RPC paradigm is not only

suitable for describing component-to-component inter-

actions, but also interactions with a (human) user. In fact,

it turns out that there are two paradigms that could be

applied: (1) the user as caller, and (2) the user as being

called. We also consider the concept of a Servlet, which is

often used for designing user interfaces in the context of

Web services. We then discuss how more complex user

interaction patterns, possibly represented as Use Case Maps

(UCM) [1] could be translated into implementations of

corresponding user interfaces.

In the last part of the paper, we then discuss the

importance of indicating which party (or system com-

ponent) is responsible for making decisions for selecting

control flow alternatives and choosing parameter values.

This leads us to propose some guidelines for describing

behavior scenarios at the requirements level. Our approach

is in line with screen-oriented requirement specifications as

proposed in the literature. The described methodology can

be used for describing the global system behavior as viewed

from the user perspective, as well as for describing the

behavior of a particular system component, as viewed

through the interactions with its environment. It applies to

the description of workflow systems involving many system

components, as well as to monolithic systems as seen

through the user interface. Some implementation issues are

also discussed.

The first part of this paper is based on a conference

presentation [3]. This work is inspired by the screen-

oriented approach to requirement specification as described

in [4,10,11].
2. Standards for inter-component communication

in distributed systems

The concept of procedure call is a basic tool for

abstraction in software engineering. It is also the basic

communication paradigm in object-oriented system design,

since it represents the execution of a method on an object

instance. The latter plays the role of a server providing the

service identified by the method name. The details of how

the service is provided, i.e. the body of the method

implementation, is not of interest at this level of

abstraction. However, the object instance providing the

service may have an internal state that may determine the

result provided by the execution of some service methods,

and may also be changed during the execution of some of

these methods. It is important to document such state

dependencies, because the result of a method call may

then depend on previous message calls and their

parameters. Unfortunately, there is no standard way to

document such dependencies.
While originally the called object and the calling process

were usually implemented within the same program

executable, it soon became obvious that the procedure call

mechanism can be adapted to the situation where the called

object resides in a different computer. This leads to the

concept of Remote Procedure Call (RPC), which was

introduced in the 1980s. In the case of an RPC, the

information concerning the method name and input

parameters must be passed in the form of a message to the

site of the called server object, and the results of the

operation must be passed back to the calling party. This

requires a well-defined protocol for exchanging this

information between the two parties.

Different RPC protocols have been defined and

implemented. Such a protocol needs a reliable message

transmission medium (for instance TCP or a secure session

could be used for this purpose) and must foresee at least two

protocol messages:
(1)
 The RPC request which contains the following

information:

(a) Identification of the server object that should

execute the procedure call. Note: in the case that

TCP is used as underlying transport protocol, the IP

address identifies already the computer on which

the object resides; the port number used by TCP

may identify an application process in that

computer which understands the RPC protocol;

the RPC request message sent to this application

should include enough information to identify the

server object within the context of that application.

(b) The name of the method (procedure) to be called.

(c) The values of the input parameters.
(2)
 After the procedure is executed, an RPC response

message is returned which must include the result

parameter(s) of the operation and any exceptional

conditions that may have occurred.
While the nature of the information exchanged in an RPC

protocol is always similar to what is said above, the way this

information is encoded depends very much on the particular

protocol. In fact, the different RPC protocols in use today

are usually associated with a number of support tools that

are provided as part of a distributed processing environ-

ment. The most important environments are the following:
(1)
 The IIOP protocol used in the CORBA environment,
(2)
 Remote Method Invocation (RMI) provided in the Java

environment,
(3)
 SOAP, often used for e-commerce applications, poss-

ibly using WebServices.
CORBA (see for instance [2]) was designed to realize

RPC for object-oriented systems where the software

components within the different computers could be written

in different languages (language heterogeneity). It is based



G.v. Bochmann / Knowledge-Based Systems 17 (2004) 303–310 305
on the standardization effort on Open Distributed Processing

(in the early 1990s), which had the aim of facilitating the

interworking between heterogeneous systems, and con-

sidered that the early system design stages should be

transparent to several dimensions, including the physical

distribution of the different system functions (see for

instance in [16]).

CORBA introduced the notation of an Interface Defi-

nition Language (IDL) for writing abstract class interfaces.

Such interface definitions can be automatically translated

into equivalent interfaces in the programming language that

is used for the implementation of one of the CORBA

component implementations, such as CCC or Java.

In this context, the concepts of stub and skeleton became

popular. The stub (sometimes called proxy) is an object that

represents the remote server object in the context of the

calling party. It accepts local calls of the methods defined

for the server, but instead of performing the operation

locally, it sends an RPC request message to the server object

and waits for the corresponding RPC response message and

presents the results to the caller through the local procedure

return mechanism. The skeleton is the software in the

remote site that accepts the RPC request message, decodes

the message and prepares a local method call on the server

object. The skeleton also receives the results from the server

object and encodes them into the RPC response message.

Java RMI (see for instance the SUN tutorial on the Web)

is similar to CORBA RPC, except that it assumes that both,

calling and called party are implemented in Java.

SOAP (Simple Object Access Protocol) was developed

by the W3C consortium and uses the XML standards for the

encoding of the RPC request and response messages (see for

instance http://www.w3.org/TR/SOAP/). In contrast to the

above two protocols, the XML encoding results in messages

that can be understood by an (expert) human reader,

however, the encoding is less compact. The format of XML

messages can be specified in the form of an XML Schema

(or a so-called DTD). Consequently, the interface provided

by a server object through the SOAP protocol is normally

described by such a schema.

SOAP does not use TCP as the underlying transport

mechanism. Since it evolved in the context of Web

applications, the Web server access protocol HTTP (which

runs on top of TCP) was adopted for this purpose. This also

means that the server object instance to be called is identified

by an URL, which includes the host name, which is used to

derive the IP address of the Web server. One advantage of

using the Web access protocol is that it is less affected

by security firewalls than TCP connections using different

port numbers. Therefore, SOAP and XML technologies are

used for the development of the so-called Web Services

(see for instance http://www.w3.org/2002/ws/) and Grid

Applications [12].

As mentioned earlier, various tools and platforms are

available for using these different RPC environments. For

instance, the CORBA environment provides for translators
that translate RPC interface specifications written in

IDL into corresponding interface definitions in the

implementation language (e.g. CCC or Java) and also

automatically produce the code for the corresponding

stubs and skeletons. In the case of Java RMI, the RPC

interface definition is directly written in Java, therefore not

requiring any translation. The code for stubs and skeletons is

also automatically obtained, at least for simple parameter

types.

Certain implementation support environments for SOAP,

such as [12], provide the automatic generation of the XML

interface schema from the interface definition given in the

Java programming language. This is very convenient when

the distributed application is written in Java. In addition, the

encoding and decoding functions included in the stubs and

skeletons are also automatically generated.

Another important aspect of these distributed computing

environments are the directories that allow a calling party to

find appropriate server objects within the distributed

environment. In the case of the CORBA and Java RMI

directories, the server objects register themselves in

a directory under a given name. The name, as well as the

directory where this name is registered, must be known to

the searching party. More sophisticated directories are

provided by the Java Jini environment (an extension of Java

RMI, see for instance SUN documentation) which provides

a so-called Lookup service where a searching party can find

a registered server object by providing as search parameters

the type of interface offered by the server and possibly

values of certain characteristic attributes of the service

object that were specified during the registration. Similar

directories are also planned in the context of Web Services

and Grid applications [6]. The Web Service Description

Language (WSDL), which is basically an XML Schema,

can be used to define the interface provided by a given

service.
3. Paradigms for defining user interfaces

As discussed in the previous section, the communication

between different system components is usually organized

as sequences of method calls, in the distributed context,

remote procedure calls or message transmissions. In this

section we discuss whether these communication primitives

are also natural units of communication for the interactions

between a user and the system. We consider first a simple

example to make our discussion more concrete. We then

consider three approaches to structuring the user inter-

actions: (a) command language interface; (b) screen-

oriented interface; and (c) Servlets.

3.1. An example application: room booking

This room booking application, originally presented in

[13], uses a database that contains information about hotel

http://www.w3.org/TR/SOAP/
http://www.w3.org/2002/ws/


Fig. 1. GUI for hotel booking application (from [13]): (a) initial screen, (b) message window, (c) validation.

G.v. Bochmann / Knowledge-Based Systems 17 (2004) 303–310306
rooms available in different cities. It interfaces with the

user and lets a user select a room for a certain period and

make a reservation. A sketch of the user interface is

provided in Fig. 1(a)–(c). Fig. 1(a) shows the initial screen

where all the defined fields are input by the user. After

pushing the ‘OK’ button, the user sees either the screen of

Fig. 1(b) (where the Message may either read ‘The

customer xxx does not exist in the database’ or ‘No room

is available for yyy’ and xxx is the customer identifier and

yyy is the customer name) or the screen of Fig. 1(c),

where all fields are output by the system. The user may

then confirm the reservation by pushing the ‘Validate’

button, or cancel the reservation and come back to the

initial screen.

The dynamic behavior of the Room Booking system can

be described by the Activity Diagram shown in Fig. 2. The

activity Prepare booking displays first the initial screen of

Fig. 1(a) and lets the user fill in the fields. The four

subsequent actions correspond to the following four cases:
(1)
 The user pushes the Quit button.
(2)
 The customer identifier is not in the database.
(3)
 No suitable room is available.
(4)
 A room is available and may be reserved.
Fig. 2. Activity diagram for the hotel booking application.
Case (4) leads to the activity Confirm booking, which

displays the screen of Fig. 1(c) and lets the user validate the

reservation or go back to the initial screen.

We note that, in this example, each activity represents a

screen of the user interface, and has the same generic

sequence of interactions with the user: first a screen is

presented to the user including values in certain information

fields, and then the user may enter data into certain fields

and push one of the buttons.

We also note that this activity diagram describes the

behavior of the whole Room Booking system (including the

database). In the original description of the Room Booking

application in [13], the user interaction sequences were not

defined by an Activity Diagrams, as shown in Fig. 2, but

through a so-called Process Route Diagram (PRD) accord-

ing to the Lyee methodology [11], and the application had

an explicit interface with a database supporting SQL

queries.
3.2. Command language interface

With a command language interface, the user types a

command, waits for a response from the system, and then

writes the next command. In the simplest case, each

command formulated by the user corresponds to the name

of a method provided by the system, which plays the role of

a passive object that accepts a certain number of method

calls in the form of user commands. In the simplest case, the

user will type the name of the command (name of method to

be invoked), and the values of the required input parameters

of the method. Since the user waits for the answer, this

sequence of sending the request and receiving the response

from the system is logically equivalent to an RPC where the

user is the calling party while the system is the server. This

situation is therefore the same as for inter-component

communication.

In the case of our example system, a simple interaction

scenario, corresponding to two RPCs, may have the

following form:
RPC1(a)–The user types: PrepareBooking (cust_id,

begin_date, end_date, category, city)



G.v. Bochmann / Knowledge-Based Systems 17 (2004) 303–310 307
RPC1(b)–The system responds: Booking candidate

(hotel_name, room_number, stars)
RPC2(a)–The user types: ConfirmLastBooking
RPC2(b)–The system responds: OK

3.3. Screen-oriented interface

With a screen-oriented GUI, one would like to consider a

screen as a basic unit of interactions. This is an approach

proposed in many papers, e.g. [4,10,11]. While in the

command language interface, each unit of interaction (each

RPC) is realized by two messages, first from the user to the

system, and then from the system to the user, in the case of a

screen-oriented interface, the order of the messages

involved are in the opposite order: first the screen display

content is sent by the system to the browser (which

represents the user as far as the application running in the

server is concerned), and then the user fills in some data and

clicks a button which results in the sending of a message to

the application.

For the example discussed above, we would have the

sequence:
Screen 1(a)–System sends: initial screen (see Fig. 1(a))
Screen 1(b)–User sends: cust_id, begin_date, end_date,

category, city
Screen 2(a)–System sends: validation screen (see

Fig. 1(c))
Screen 2(b)–User sends: click-Validate
Screen 3(a)–System sends: message screen (see

Fig. 1(b)) with message ‘OK’

If we consider each screen as a unit of interaction, we

may again consider each unit to be an RPC. But in contrast

to the case of the command language interface, each RPC is

initiated by the application server and the user plays the role

of the RPC server side. This, in fact, corresponds to what is

really going on. The application is in charge of the

sequencing of the screens, but it takes the responses from

the user into account for making certain decisions.

3.4. Defining the interface with servlets

The concept of a servlet was introduced in the context of

Web application programming. A servlet represents a

fraction of an application that corresponds to the code that

should be executed in response to a single message (HTTP

Request) from the user. Cutting the application into such

servlets simplifies the task of the Web server that has to

manage concurrent HTTP Requests from various users. If

the request corresponds to a servlet, it may create a new

instance of the servlet, execute it in parallel with other

requests, and destroy it afterwards. A servlet has local state,

but it may also refer to state variables of the application,

called session parameters. Sometimes the concept of a

servlet is combined with facilities for assembling Web
pages in HTML format (e.g. Java Server Pages, or

Microsoft’s Active Server Pages).

If we assume that our servlet implementation of the GUI

presents the same screen-oriented interface as discussed

above, we would have the same exchange of message

between the user’s browser and the Web server. There

would be two servlets, one that searches the database to find

a candidate booking and one that confirms the booking.

They would be executed in the Web server after the

reception of the messages Screen1(b) and Screen2(b),

respectively. The first servlet will generate the Screen2(a)

message and the second the Screen3(a) message.

From the point of view of these servlets, each servlet sees

first a message from the user to which it then responds. If we

take a servlet as the unit of interaction, each unit can

therefore be considered to be an RPC initiated by the user,

as in the case of the command language interface.
3.5. Discussion

As we see in our example, a single service, for instance

the ‘Find Booking Candidate’ method of the Hotel

Booking application, needs normally at least two screens,

one for collecting the input parameters that are passed to

the service method, and one for displaying the results to

the user and to allow the user to select the next step of the

interactions. Through the different responses that the

application may provide to a given user request and

through the different options for the next step provided to

the user, the application allows for a large number of

different interaction scenarios.

It is not immediately clear whether the screen-oriented or

the servlet-oriented approach to defining the interactions at

the GUI is more natural for the designer. The servlet-

oriented approach is closer to the logical functions that are

provided by the application to the user, while the screen-

oriented approach is closer to the way the user will see the

system. Further study should determine their relative

advantages and shortcomings.

While RPC and screens are relatively small units of

interactions within a longer use case scenario, there are

various notations that have been proposed to describe such

scenarios on a larger scale at the logical level (independent

of screen layouts). Such notations are Use Case Maps [5],

UML’s Activity Diagrams [14], and Live Sequence Charts

(LSC) [7,8] (to mention just a few). We mention that a tool

is described in [8] that allows capturing requirements in

relation with screen-oriented GUIs and automatically store

them in the form of Live Sequence Charts. This approach

appears to be quite similar to the Lyee methodology [13]. In

the context of workflow modeling using Web Services, the

so-called Business Process Execution Language (BPEL), an

extension of WSDL, is proposed for describing the allowed

execution sequences for activities or service calls.



Fig. 3. Activity Diagram of Hotel Booking application showing two

‘parties’: (i) user responsibility and interface and (ii) system responsibility.

G.v. Bochmann / Knowledge-Based Systems 17 (2004) 303–310308
4. Responsibilities of actors and components

4.1. Responsibilities for control flow decisions

It is quite common that a single scenario definition, such

as the one given in Fig. 2, covers different alternate

execution sequences. In the example of Fig. 2, the activity

Prepare booking has three normal outcomes (No room,

Invalid request, and Confirm booking) plus the quit

alternative possibly initiated by the user, while the activity

Confirm booking has two possible outcomes. Most notations

for describing such scenarios do not explicitly indicate the

responsibility for such control flow decisions. However, for

the understanding of the scenario, this information is quite

important. In the case of our example, the decision about the

three normal outcomes of the Prepare booking activity is

made by the booking application, while the decision about

the outcome of the Confirm booking activity is made by the

user. If it were the opposite, the behavior of the booking

application would be quite different.

We note that with the notation of the activity diagram of

Fig. 2, and in other similar notations intended for describing

the black-box behavior of a system, the detailed realization

of an activity is not defined. If an activity represents

interactions with the user, or some other component outside

the system boundary, it is not indicated which initiatives are

taken by the user (or the environment of the system) and

which initiatives are taken by the system itself in order to

realize the execution of the given activity. At this high level

of abstraction, an activity may be represented as a

rendezvous between the system and its environment, as

defined in the specification language LOTOS [9].

However, in order to define the system behavior in terms

of requirements that must be satisfied by the implementation

of the system, it is important to distinguish between the

properties that must be satisfied by the system implemen-

tation and the assumptions that can be made about the

behavior of the system’s environment [15]. This means, we

have to specify which party (the system or the user) makes

the control flow decisions and which party provides input

parameters for a particular procedure call.

We, therefore, suggest that a scenario definition of the

behavior of a system should include for each activity that

admits several possible outcomes, an allocation of respon-

sibility for the control flow choice to either the system to be

built, or to the user. And if certain parameters are

determined during the execution of an alternative, then

similarly, the responsibility for determining the value of

each parameter should be stated.

In the case of the example of Fig. 2, the activities No

room and Invalid request have only one outcome and no

parameters, the activity Confirm booking has two alternate

outcomes determined by the user, and the activity Prepare

booking has three possible outcomes determined by the

system, one initiated by the user, and several query

parameters determined by the user. Therefore, we cannot
allocate the responsibility for the latter activity to a single

party. In fact, it may be a good design practice to separate

this activity into two sub-activities, each with the respon-

sibility of a single party: (1) the sub-activity Prepare

request which determines the query parameters, a respon-

sibility of the user, and (2) the sub-activity Query database

which has three possible outcomes and is the responsibility

of the Room Booking system.

4.2. Guidelines for designing action scenarios

We may generalize the above discussion and come up

with the following steps for elaborating the description of

the behavior for a given system, as an extension of the

screen-oriented interface design approach described in

Section 3.3:
(a)
 Define the different activities in which the user is

involved; they correspond to the different user interface

screens.
(b)
 For each activity, identify all possible activities that

could directly follow.
(c)
 Determine responsibilities:

(i) If for a given activity, there are several possible

follow-up activities, find out whether the user or the

system is responsible for making this decision.

(ii) If for a given activity, there are parameter values

that must be determined, find out whether the user

or the system is responsible for selecting the values.
(d)
 If for a given activity, responsibilities from different

parties were identified under the previous step, then the

activity should be decomposed into sub-activities, such

that the responsibility for each sub-activity lies only

within a single party.
Applied to the example of Fig. 2, this approach results in

the scenario definition shown in Fig. 3.

We note that the resulting sub-activities and the activities

that do not have to be decomposed, each is characterized by



G.v. Bochmann / Knowledge-Based Systems 17 (2004) 303–310 309
some actions to be performed by the responsible party and a

certain number of (at least one) ‘continuations’, or follow-

up activities. In most cases, a continuation is not only the

identification of an activity (and its responsible party), but

also some input parameters that are passed from the

originating activity to the follow-up activity (e.g. the

query parameters, and the search outcome shown in Fig. 3).

In general, we may assume that the input parameters for

an activity provide all the information that is required from

the environment of the responsible party for the execution of

that activity. This is for instance the case for the Query

database activity in our example. In the case of longer user

interactions with the same application, it is often convenient

to establish a ‘session’, which means that both parties

involved keep the values of past activity parameters in local

memory; it is therefore not necessary to transmit them again

for initiating subsequent activities, since it is sufficient to

transmit the session identifier and the other party can

retrieve the previous parameter values from local memory,

if they are required for the processing of a subsequent

activity.

4.3. Implementation issues

We note that the above discussion is at a relatively high

level of abstraction. In Fig. 3 only two ‘parties’ are

identified: (1) UserResponsibility and Interface, and (2)

System Responsibility. If we consider an implementation of

the Room Booking application in a typical client–server

architecture based on current Web technology, the UserRe-

sponsibility and Interface part of the system would be

implemented in the user’s workstation within an Internet

browser, and by the user interacting through the GUI

provided by this browser. The System Responsibility would

be implemented in some server computer that would also

contain the database of hotel rooms, or would be able to

access such databases over the network.

We note that nothing has been assumed at this point

about the location where the GUI information of the

activities allocated to the UserResponsibility and Interface

party and their continuations are stored. Different

implementation strategies may be considered, such as the

following:
(a)
 A single applet: the GUIs of these activities and their

continuations (representing the control flow of the

application) are included in a Java applet which is

down-loaded when the application starts (see Start

activity in Fig. 3). This applet may be stored in some

HTTP server. The common security conventions for

applets imply that the system component realizing the

System Responsibility must reside in the same server

computer.
(b)
 An application program: instead of being down-loaded

as an applet, the system component providing the

UserResponsibility and Interface may be realized as
an application program running in the client’s work-

station. It may, in fact, have the same functionality as

the applet considered under point (a), but it would

normally have no restrictions as to the remote services it

may access.
(c)
 HTML files plus servlets: the Prepare request activity

could be realized as an HTML file stored in an HTTP

server, which would have a continuation pointing to a

servlet realizing the database query, and possibly

running on a different computer. The response of the

servlet will normally include an HTML string repre-

senting the GUI of the follow-up activity (either No

room, Invalid request or Confirm booking). The

Confirm booking HTML string would include a

continuation pointing to another servlet that is respon-

sible for committing the database transaction if the user

enters the validate response. Here it could be useful to

keep session state information from the execution of the

first servlet to the execution of the second.
Clearly these different implementation choices can lead

to very different software structures. We note that the

second implementation strategy above corresponds to the

paradigm of the ‘command language interface’ discussed in

Section 3.2 in the sense that each of the two servlets

corresponds to one remote procedure call from the client to

the server.

Nevertheless, it appears that for the high-level concep-

tualization of a new application, the screen-oriented strategy

discussed in Section 3.3 and represented by the diagrams in

Figs. 2 and 3 are quite useful. Therefore, an interesting

objective for further study seems to be the development of

methods and tools that allow the systematic development of

system implementations from abstract screen-oriented

requirements definitions, allowing as input the various

architectural and implementation options that may be

desirable in practice.

Among these implementation options is also the choice

of one of the RPC protocols, discussed in Section 2. The

names and types of the input parameters for each of the

different activities would typically be defined using

the interface definition facility associated with the RPC

protocol. In the case of CORBA, this would be an interface

specification in the IDL language; for SOAP, this would be

an XML Schema; and for Java RMI, this would be a Java

interface definition. As mentioned in Section 2, the support

tools associated with these RPC infrastructures may be

useful in this context.
5. Conclusions

We conclude from this study that the Remote Procedure

Call (RPC) paradigm is a very general communication

primitive which is suitable for inter-component communi-

cation in distributed software systems, as well as for



G.v. Bochmann / Knowledge-Based Systems 17 (2004) 303–310310
describing the interactions with a user at an abstract level

(independent of the layout of the graphical user interface).

There are two ways the RPC paradigm can be applied to the

user interactions (1) in the traditional way of letting the user

call the services of the application, and (2) in line with

screen-oriented GUI interface design, by considering that

the user answers questions and selects choices that are

presented by the system to the user through a given screen

layout.

We pointed out the importance of identifying the party

that is responsible for making the choice of alternative

control flows, whenever such a choice exists. This leads to

guidelines for describing system behavior scenarios at the

requirements level, in line with the screen-oriented require-

ment specifications proposed in the literature. This meth-

odology can be used for describing the global system

behavior as viewed from the user perspective, as well as for

describing the behavior of a particular system component,

as viewed through the interactions with its environment. It

applies also to the description of workflow systems

involving many system components. Further work is

required for building tools that could support the implemen-

tation process that leads from these abstract system

requirements to an implementation within a given software

architecture.
References

[1] D. Amyot, A. Eberlein, An evaluation of scenario notations for

telecommunication systems development, Ninth International Con-

ference on Telecommunications Systems (ICTS’01), Dallas, USA,

2001.

[2] S. Baker, CORBA Distributed Objects: Using Orbix, Addison-

Wesley, Reading, MA, 1997.
[3] G.v. Bochmann, Describing requirements in Lyee and in conventional

methods: towards a comparison, in new trends in software

methodologies, tools and techniques, Proceedings of Lyee_W02

Conference, Paris, IOS Press, 2001. pp. 239–253.

[4] D. Brown, M. Burnett, G. Rothenmel, End-user testing of Lyee

programs: a preliminary report, in new trends in software method-

ologies, tools and techniques Proceedings of Lyee_W02 Conference,

Paris, IOS Press, 2001. pp. 239–253.

[5] R.J.A. Buhr, Use case maps as architectural entities for complex

systems, IEEE Transanctions on Software Engineering 24 (12) (1998)

1131–1155.

[6] Furmento, N., Lee, W., Mayer, A., Newhouse, S., Darlington, J.

ICENI: an open grid service architecture implemented with Jini, in

Proceedings of SuperComputing, Baltimore, USA, Nov. 2002.

[7] D. Harel, Can behavioral requirements be executed? (and why

would we want to do so?), Proceedings of EMSOFT 2002, Lecture

Notes in Computer Science, vol. 2491, Springer, Berlin, 2002. pp.

30–31.

[8] D. Harel, R. Marelly, Specifying and executing behavioral require-

ments: the play in/play-out approach, Software and System Modeling

(SoSyM) 2 (2) (2003) 82–107.

[9] T. Bolognesi, E. Brinksma, Introduction to the ISO specification

language lotos, Computer Networks and ISDN Systems 14 (1) (1987)

25–59.

[10] J. Landay, B. Myers, Sketching interfaces: toward more human

interface design, Computer 34 (2001) 56–64.

[11] Negoro, F. Intent operationalisation for source code generation, in

Proceedings of SCI, Orlando, FL, USA, July 2001.

[12] Open Grid Service Intrastructure, see http://www.gridforum.org/

ogsi-wg/.

[13] C. Salinesi, M. Ben Ayed, S. Nurcan, Development using Lyee: a case

study with LyeeAll, Internal Technical Report TR1-2, University of

Paris I and ICBSMT, Oct. 2001.

[14] J. Rumbaugh, G. Booch, I. Jacobson, The Unified Modeling

Language, User Guide, Object Technologies/Addison-Wesley, 1999.

[15] M. Abadi, L. Lamport, Conjoining specifications, ACM Transactions

on Programming Languages and Systems 17 (3) (1995) 507–534.

[16] G. Blair, J.B. Stefani, Open Distributed Processing and Multimedia,

Addison-Wesley, 1998.

http://www.gridforum.org/ogsi-wg/
http://www.gridforum.org/ogsi-wg/

	High-level design for user and component interfaces
	Introduction
	Standards for inter-component communication in distributed systems
	Paradigms for defining user interfaces
	An example application: room booking
	Command language interface
	Screen-oriented interface
	Defining the interface with servlets
	Discussion

	Responsibilities of actors and components
	Responsibilities for control flow decisions
	Guidelines for designing action scenarios
	Implementation issues

	Conclusions
	References


